Discrete Mathematics lecture3
Cardinality of sets(基数)
A和B有相同的基数如果A和B之间是双射的(bijection)->表示为|A|=|B|
Schröder-Bernstein Theorem
如果有一个单射函数 f:$A \rightarrow B$ 和一个单射函数 g:$B \rightarrow A$ 那么就可以说明存在一个双射函数在A和B之间 (A和B都可以是无穷的)->|A|=|B| \(例子\) \(f: (0,1) \rightarrow (0,1]\quad f(x)=x\) \(g:(0,1] \rightarrow (0,1)\quad g(x)=\frac{x}{2}\)
countable and uncountable sets
countable:有限集合或者集合的基数和$Z^+$一样 uncountable:反之就是uncountable
如何证明一个集合是countable:
- 证明存在两个单射函数从$Z^+ \rightarrow A$以及从$A \rightarrow Z^+$
- 直接列出一个序列 eg1 :证明Z是countable $list a sequence:0,1,-1,2,-2…$ eg2 :证明有理数是countable
列出所有可能 $\frac{1}{1}\quad \frac{2}{1}\quad \frac{3}{1}\quad \frac{4}{1}\quad\frac{5}{1}\quad …$ $\frac{1}{2}\quad \frac{2}{2}\quad \frac{3}{2}\quad \frac{4}{3}\quad\frac{4}{1}\quad …$ $\frac{1}{3}\quad \frac{2}{3}\quad \frac{3}{3}\quad \frac{4}{3}\quad\frac{5}{3}\quad …$
如何证明一个集合是uncountable
$Cantor’s: diagonal: argument$
Assume that R is countable. Then, every subset of R is countable . In particular, interval[0, 1] is countable. This implies that there exists a list $r_1, r_2, r_3, …$that can enumerate all elements in this set, where $r_1 =\textcolor{red}{0.d_{11}} d_{12} d_{13}…$ $r_2 =0.d_{21} \textcolor{red}{d_{22}} d_{23}…$ $r_3 =0.d_{31} d_{32} \textcolor{red}{d_{33}}…$ $…$ 然后构造一个使得他的他的第i个数和$r_i$的第i个元素都不一样
eg证明𝒫(N)的power set是uncountable Proof by contradiction: (Cantor’s diagonal argument) • Assume that 𝒫(N) is countable. This means that all elements of this set can be listed as $S_0, S_1, S_2, …$,where $S_i∈ \mathcal{P}(N)$. Then, each $S_i⊆ N$ can be represented by a bit string $b_{i0}b_{i1}b_{i2}···$, where $b_{ij}= 1$ if $j ∈ S_i \quad and\quad b_{ij}=0 \quad if \quad j ∉ Si:$ $S_0= \textcolor{red} {b_{00}}b_{01}b_{02}b_{03}…$ $S_1= b_{00}\textcolor{red}{b_{01}}b_{02}b_{03}…$ $S_2= b_{20}b_{21}\textcolor{red}{b_{22}}b_{23}…$ $…$ 大致意思就是将N的子集$S_i$用0101序列表示,1表示该子集存在某个元素 然后N的所有子集就可以变为一个01序列,然后用$Cantor’s: diagonal: argument$证明存在一个$S_i$不在那个序列中
Enjoy Reading This Article?
Here are some more articles you might like to read next: